Skip to main content
Log in

Promoting Conceptual Change in Pre-service Primary Teachers through Intensive Small Group Problem-Solving Activities

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Three Saturday sessions were provided for 22 pre-service primary teachers in the Midlands of England to help address their problems in understanding science. The course focused on developing understanding of the major concepts relating to the particulate theory of matter, energy, genetics and evolution rather than knowledge recall. A constructivist strategy using peer discussion of science problems with minimal practical work was used. Participants were given word and picture problems to provoke discussion and challenge existing ideas. Students were encouraged to raise and explore their own questions in a supportive environment. Cognitive change was assessed by examining the students’ written explanations of the same problem at the beginning and end of each day. New problems requiring the transfer of ideas, discussed during the sessions, were also posed at the end of each day. Students completed a questionnaire and were interviewed about the teaching approach at the end of the course. They reported increased confidence and commented very favourably on the teaching strategy used. There were important conceptual improvements among the students but some errors continued. Results indicate the importance of cyclical review and revisiting of concepts. This is particularly important as increased confidence to teach science may not be fully grounded on correct scientific understanding.

Résumé

Trois séances de cours ont été offertes le samedi à 22 futurs enseignants au primaire dans les Midlands de l’Angleterre, afin de les aider à affronter certains problèmes de compréhension des concepts scientifiques. Les cours étaient centrés sur la compréhension des principaux concepts liés à la théorie des particules, à l’énergie, à la génétique et à l’évolution, et non sur la mémorisation des connaissances. La stratégie constructiviste utilisée prévoyait des discussions entre étudiants au sujet de certains problèmes scientifiques, et le travail pratique était considérablement réduit. On a soumis aux participants des problèmes présentés sous forme de mots ou d’images pour susciter la discussion et contester les idées reçues. Ils ont aussi été encouragés à soulever leurs propres questions et à les explorer dans un environnement favorable. Afin de mesurer le changement cognitif, on a analysé les explications écrites fournies par les étudiants pour un même problème au début et à la fin de chaque journée de cours. De nouveaux problèmes, nécessitant le transfert des notions dont il avait été question pendant la séance, ont également été soulevés au terme de chaque journée. Les étudiants ont ensuite répondu à un questionnaire et ont été interviewés au sujet de cette méthode d’enseignement.

Les commentaires des étudiants au sujet de cette approche sont très favorables. La décision d’associer d’une part des travaux pratiques et d’autre part des discussions dirigées par des enseignants spécialisés, portant sur des problèmes qui suscitent la réflexion, s’est avérée valide. S’il est vrai que les discussions entre pairs impliquaient à l’occasion la diffusion de notions erronées, elles ont toutefois encouragé les étudiants à apprendre les uns des autres et permis de soulever de nombreuses questions. Chez tous les étudiants, on a noté un plus grand intérêt pour les sciences, de même qu’un meilleur niveau de confiance en soi. Il a également été possible d’évaluer et d’affronter de nombreuses idées erronées courantes chez les enseignants en formation. Cependant, bien que la majorité des étudiants aient amélioré leur niveau de compréhension dans chacun des champs conceptuels, cela n’a pas été le cas de tous les participants. Certains se sentaient plus à l’aise devant la perspective d’enseigner aux enfants, mais manifestaient un niveau de compréhension des concepts scientifiques encore lacunaire. Un soutien spécifique accru destiné à ces étudiants est donc nécessaire, et tous les enseignants doivent avoir ensuite l’occasion de revenir sur ces concepts grâce à l’instauration d’un processus cyclique de révision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Appleton, K. (2002). Science activities that work: Perceptions of primary teachers. Research in Science Education, 32, 393–410.

    Article  Google Scholar 

  • Appleton, K. (1995). Student teachers’ confidence to teach science: Is more science knowledge necessary to improve self-confidence? Internationaljournal of Science Education, 17, 357–369.

    Google Scholar 

  • Appleton, K., & Kindt, I. (2002). Beginning elementary teachers’ development as teachers of science. Journal of Science Teacher Education, 13(1), 43–61.

    Article  Google Scholar 

  • Appleton, K., & Kindt, I. (1999). Why teach primary science? Influences on beginning teachers’ practice. International Journal of Science Education, 21, 155–168

    Article  Google Scholar 

  • Baird, J.R., Fensham, P.J., Gunstone, R.F., & White, R.T. (1991). The importance of reflection in improving science teaching and learning. Journal of Research in Science Teaching, 28(2), 163–182.

    Article  Google Scholar 

  • Banet, E., & Ayuso, G.E. (2003). Teaching of biological inheritance and evolution of living beings in secondary school. International Journal of Science Education, 25, 373–407.

    Article  Google Scholar 

  • Bencze, L., & Hodson, D. (1999). Changing practice by changing practice: Toward more authentic science and science curriculum development. Journal of Research in Science Teaching, 36, 521–539.

    Article  Google Scholar 

  • Carre, C. (1993). Performance in subject-matter knowledge in science. In N. Bennett & C. Carre (Eds.), Learning to teach (pp. 18–35). London: Routledge.

    Google Scholar 

  • de Laat, J., & Watters, J.J. (1995a, July). Science teaching self efficacy in a primary school: A case study. Paper presented at the annual meeting of the Australasian Science Education Research Association, La Trobe University, Bendigo, Victoria, Australia.

    Google Scholar 

  • de Laat, J., & Watters, J.J. (1995b). Science teaching self efficacy in a primary school: A case study. Research in Science Education Research, 25, 453–464.

    Article  Google Scholar 

  • Department for Education and Employment (1998). Teaching: High Status, High Standards: Requirements for Courses of Initial Teacher Training. London: Department for Education and Employment.

    Google Scholar 

  • Duit, R., & Haeussler, P. (1994). Learning and teaching energy. In P.J. Fensham, R.F. Gunstone, & R.T. White (Eds.), The content of science: A constructivist approach to its teaching and learning (pp. 185–200). London: Falmer.

    Google Scholar 

  • Flores, F., Tovar, M.E., & Gallegos, L. (2003). Representation of the cell and its processes in high school students: an integrated view. International Journal of Science Education, 25, 269–286.

    Article  Google Scholar 

  • Gallas, K. (1995). Talking their way into science. New York: Teachers College Press.

    Google Scholar 

  • Ginns, L.S., & Watters, J.J. (1995). An analysis of understandings of preservice elementary teacher education students. Journal of Research in Science Teaching, 32, 205–222.

    Article  Google Scholar 

  • Grossman, P.L., Wilson, S.M., & Shulman, L.S. (1989). Teachers of substance: Subject matter knowledge for teaching. In M.C. Reynolds (Ed.), Knowledge base for the beginning teacher (pp. 23–37), New York: Pergamon.

    Google Scholar 

  • Gunstone, R.F., & Northfield, J. (1994). Metacognition and learning to teach. International journal of Science Education, 16, 523–537.

    Article  Google Scholar 

  • Harlen, W. (1997). Primary teachers’ understanding in science and its impact in the classroom. Research in Science Education, 27, 323–337.

    Article  Google Scholar 

  • Harlen, W., & Holroyd, C. (1997). Primary teachers’ understanding of concepts of science: Impact on confidence and teaching. International Journal of Science Education, 19, 93–105.

    Article  Google Scholar 

  • Hashweh, M.Z. (1996). Effects of science teachers’ epistemological beliefs in teaching. Journal of Research in Science Teaching 33, 47–63

    Article  Google Scholar 

  • Jegede, O., & Okebukola, P.A. (1991). The effect of instruction on socio-cultural beliefs hindering the learning of science. Journal of Research in Science Teaching, 28, 275–285.

    Article  Google Scholar 

  • Johnson, P. (1998). Children’s understanding of changes of state involving the gas state, part 1: Boiling water and the particle theory. International Journal of Science Education, 20, 567–583.

    Article  Google Scholar 

  • Justi, R.S., & Gilbert, J.K. (2003). Teachers’ views on the nature of models, International Journal of Science Education, 25, 1369–1386.

    Article  Google Scholar 

  • Keogh, B., & Naylor, S. (1997). Starting points for science. Sandbach: Millgate House.

    Google Scholar 

  • Krnel D., Watson, R. & Glazer, S.A. (1998). Survey of research related to the development of the concept of “matter.” International Journal of Science Education, 20, 257–289.

    Article  Google Scholar 

  • Kruger, C. (1990). Some primary school teachers’ ideas about energy. Physics Education, 25, 86–91.

    Article  Google Scholar 

  • Kruger, C., Palacio, D., & Summers, M. (1990). A survey of primary school teachers’ conceptions of force and motion. Educational Research, 32, 83–95.

    Article  Google Scholar 

  • Kruger, C., Palacio, D., & Summers, M. (1991). Understanding energy. Oxford: University of Oxford Dept of Educational Studies and Westminster College, Oxford.

    Google Scholar 

  • Kruger, C., Palacio, D., & Summers, M. (1992). Surveys of English primary school teachers’ conceptions of force, energy and materials. Science Education, 76, 339–351.

    Article  Google Scholar 

  • Kruger, C., & Summers, M. (1988). Primary school teachers’ understanding of science. Journal of Education for Teaching, 14, 259–265.

    Article  Google Scholar 

  • Kruger, C., & Summers, M. (1989). Some primary teachers’ understanding of changes in materials. School Science Review, 71(255), 17–27.

    Google Scholar 

  • Kruger, C., Summers, M., & Palacio, D. (1990a). An investigation of some English primary school teachers’ understanding of the concepts force and gravity. British Educational Research Journal, 16, 383–397.

    Article  Google Scholar 

  • Kruger, C., Summers, M., & Palacio, D. (1990b). INSET for primary science in the National Curriculum in England and Wales: Are the real needs of teachers perceived? Journal of Education for Teaching, 16(2), 133–146.

    Article  Google Scholar 

  • Lee, O. (1995). Subject matter knowledge, classroom management, and instructional practices in middle school science classrooms. Journal of Research in Science Teaching, 32, 423–440.

    Article  Google Scholar 

  • Lenton, G., & McNeil, J. (1991a). Prevalence phase-results from the biology questionnaire. Working paper no. 13. PSTS project. Oxford: Oxford University Department of Educational Studies/Westminster College.

    Google Scholar 

  • Lenton, G., & McNeil, J. (1991b). Selected findings from the biology interviews and questionnaire. Working paper no. 14, PSTS project. Oxford: Oxford University Department of Educational Studies/Westminster College.

    Google Scholar 

  • Lenton G., & Prelle S. (1995). Understanding living things: genes and evolution PSTS project. Oxford: Oxford University Department of Educational Studies/Westminster College.

    Google Scholar 

  • Millar, R., & Osborne J. (1998). Beyond 2000: Science education for the future. London: King’s College London, School of Education.

    Google Scholar 

  • National Curriculum Council (NCC) (1993). Knowledge and understanding of science; Energy: A guide for teachers. London: NCC.

    Google Scholar 

  • Naylor, S. & Keogh, B. (2000). Concept cartoons in science education. Sandbach: Millgate House.

    Google Scholar 

  • Neale, D., Smith, D., & Johnson, V. (1990). Implementing conceptual change teaching. Elementary School Journal, 91(2), 109–131.

    Article  Google Scholar 

  • Osborne, J., & Simon, S. (1996). Primary science: Past and future directions. Studies in Science Education, 26, 99–147.

    Article  Google Scholar 

  • Palmer, D.H. (2002). Factors contributing to attitude exchange amongst preservice elementary teachers. Science Teacher Education, 88(1), 122–138.

    Google Scholar 

  • Perkes, V.A. (1975). Relationships between a teacher’s background and sensed adequacy to teach elementary science. Journal of Research in Science Teaching, 12, 85–88.

    Article  Google Scholar 

  • Pendlington, S., Palacio, D., & Summers, M. (1993). Understanding materials and why they change PSTS project. Oxford: Oxford University Department of Educational Studies/Westminster College.

    Google Scholar 

  • Rivard, L.P., & Straw, S.B. (2000). The effect of talk and writing on learning science: an exploratory study. Science Education, 84, 566–593.

    Article  Google Scholar 

  • Russell, T., Bell, D., McGuigan, L., Quaker, A., & Schilling, M. (1992). Teachers’ conceptual understanding in science: needs and possibilities in the primary phase. Evaluation and Research in Education, 6(2&3), 129–143.

    Article  Google Scholar 

  • Schoon, K.J., & Boone, W.J. (1998). Self-efficacy and alternate conceptions of science of pre-ser-vice elementary teachers. Science Education, 82, 553–568.

    Article  Google Scholar 

  • Shymansky, J.A., Woodworth, G., Norman, O., Dunkhase, J., Matthews, C., & Chin-Tang, L. (1993). A study of changes in middle school teachers’ understanding of selected ideas in science as a function of an in-service program focusing on student preconceptions. Journal of Research in Science Teaching, 30, 737–755.

    Article  Google Scholar 

  • Smith, E.L., & Sendelbach, N. (1982). The program of plans and the activities of the classroom: The demands of activity-based science. In J. K. Olsen (Ed.), Innovation in the science curriculum: Classroom knowledge and curriculum change (pp. 72–106). London: Croom Helm.

    Google Scholar 

  • Summers, M. (1992). Improving primary teachers’ understanding of science concepts - theory into practice. International Journal of Science Education. 14(1), 25–40.

    Article  Google Scholar 

  • Summers, M., & Kruger, C. (1992). Research into English primary school teachers’ understanding of the concept energy. Evaluation and Research in Education, 6(2&3), 95–111.

    Article  Google Scholar 

  • Summers, M., & Kruger, C. (1994). A longitudinal study of a constructivist approach to improving primary school teachers’ subject matter knowledge in science. Teaching and Teacher Education, 10, 499–519.

    Article  Google Scholar 

  • Summers, M., & Mant, J. (1995). A survey of some primary school teachers’ understanding of the Earth’s place in the universe. Educational Research, 37(1), 1–19.

    Google Scholar 

  • Taylor, N., & Lucas, K. (2001). Some learning outcomes from a science program for pre-service primary teachers undertaken in the context of a developing country. Evaluation and Research in Education, 15, 228–249.

    Article  Google Scholar 

  • University of Cambridge Local Examinations Syndicate (1999). The science knowledge audit. Cambridge: UCLES.

    Google Scholar 

  • Wittrock, M.C. (1994). Generative science teaching. In P. Fensham, R. Gunstone & R. White (Eds.), The content of science (pp. 29–38). London: Falmer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarvis, T., McKeon, F. & Taylor, N. Promoting Conceptual Change in Pre-service Primary Teachers through Intensive Small Group Problem-Solving Activities. Can J Sci Math Techn 5, 21–39 (2005). https://doi.org/10.1080/14926150509556642

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150509556642

Navigation